viernes, 29 de mayo de 2015

AVANCES TECNOLÓGICOS

Avances Tecnológicos
 
A través de la historia de la humanidad, el hombre ha utilizado diferentes formas de comunicarse, desde la comunicación con señas, hasta la comunicación a distancia por medio de dispositivos tecnológicos avanzados.
Los avances logrados en el área de telecomunicaciones han permitido que el hombre se desempeñe de una manera más eficiente, y es esta eficiencia lo que en gran medida, ha motivado a empresas nuevas que día a día exigen mayores retos a quienes lo desarrollan.
De esta forma, se ha llegado a alternativas de gran impacto a través del tiempo como son: Internet (correo electrónico), tren rápido, avión, cables de comunicación (ejemplo: fibra óptica), telefonía celular, televisión por cable, etc.
Al comenzar el tercer milenio, la humanidad está creando una red global de transmisión instantánea de información, de ideas y de juicios de valor en la ciencia, el comercio, la educación, el entretenimiento, la política, el arte, la religión, y en todos los demás campos. En esta red ya se puede ver en tiempo real, el sentir de la humanidad, pero al mismo tiempo también es posible tergiversar, manipular o frivolizar este sentir; es decir, paradójicamente, los medios de comunicación también pueden usarse para separar y aislar.
Así, el mundo de la información es, tal vez, uno de los ámbitos que ha sufrido cambios más veloces en el mundo actual. ¿Quién se hubiera imaginado hace ochenta años, por poner una cifra, que una información podría ser leída en cualquier parte del mundo simultáneamente?
En base a lo anterior, el presente trabajo pretende explicar el cómo ha ido cambiando la forma de comunicarse de la humanidad, a partir de los avances tecnológicos. Además de explicar, también pretende analizar estos cambios a partir de lo que son la comunicación, sus funciones y objetivos, así como también lo que es la información y su trascendencia dentro de la comunicación, logrando de esta forma dilucidar las consecuencias que estos cambios han producido en la comunicación y, en general, en la realidad de la humanidad del siglo XXI; un mundo inmerso en un proceso de globalización y modernidad o postmodernidad, que lo han llevado a ser lo que hoy es.

LOS ROBOTS

Los Robots
 
Un robot es una entidad virtual o mecánica artificial. En la práctica, esto es por lo general un sistema electromecánico que, por su apariencia o sus movimientos, ofrece la sensación de tener un propósito propio. La independencia creada en sus movimientos hace que sus acciones sean la razón de un estudio razonable y profundo en el área de la ciencia y tecnología. La palabra robot puede referirse tanto a mecanismos físicos como a sistemas virtuales de software, aunque suele aludirse a los segundos con el término de bots.
No hay un consenso sobre qué máquinas pueden ser consideradas robots, pero sí existe un acuerdo general entre los expertos y el público sobre que los robots tienden a hacer parte o todo lo que sigue: moverse, hacer funcionar un brazo mecánico, sentir y manipular su entorno y mostrar un comportamiento inteligente, especialmente si ese comportamiento imita al de los humanos o a otros animales. Actualmente podría considerarse que un robot es una computadora con la capacidad y el propósito de movimiento que en general es capaz de desarrollar múltiples tareas de manera flexible según su programación; así que podría diferenciarse de algún electrodoméstico específico.
Aunque las historias sobre ayudantes y acompañantes artificiales, así como los intentos de crearlos, tienen una larga historia, las máquinas totalmente autónomas no aparecieron hasta el siglo XX. El primer robot programable y dirigido de forma digital, el Unimate, fue instalado en 1961 para levantar piezas calientes de metal de una máquina de tinte y colocarlas.
Por lo general, la gente reacciona de forma positiva ante los robots con los que se encuentra. Los robots domésticos para la limpieza y mantenimiento del hogar son cada vez más comunes en los hogares. No obstante, existe una cierta ansiedad sobre el impacto económico de la automatización y la amenaza del armamento robótico, una ansiedad que se ve reflejada en el retrato a menudo perverso y malvado de robots presentes en obras de la cultura popular. Comparados con sus colegas de ficción, los robots reales siguen siendo limitados.
 
 

BOBINAS DE TESLA

Bobina de Tesla
Una bobina de Tesla es un tipo de transformador resonante que produce altas tensiones de elevadas frecuencias (radiofrecuencias), llamado así en honor a su inventor, Nikola Tesla, un extraordinario ingeniero serbio-estadounidense, quien en 1891 desarrolló un generador de alta frecuencia y alta tensión con el cual proyectaba trasmitir la energía eléctrica sin necesidad de conductores. Las bobinas de Tesla están compuestas por una serie de circuitos eléctricos resonantes acoplados. En realidad Nikola Tesla experimentó con una gran variedad de bobinas y configuraciones, así que es difícil describir un modo específico de construcción que satisfaga a aquéllos que hablan sobre bobinas de Tesla. Las primeras bobinas y las bobinas posteriores varían en configuraciones y montajes. Generalmente las bobinas de Tesla crean descargas eléctricas de largo alcance, lo que las hace muy espectaculares con efectos observables por el ojo humano como chispas, coronas y arcos eléctricos. Aunque la idea de Tesla no prosperó, a él le debemos la corriente trifásica, los motores de inducción que mueven las industrias y otras 700 patentes más.
La bobina Tesla funciona de la siguiente manera: El transformador T1 carga al capacitor C1 y se establece una alta tensión entre sus placas. El voltaje tan elevado es capaz de romper la resistencia del aire, y hace saltar una chispa entre las terminales del explosor EX. La chispa descarga al capacitor C1 a través de la bobina primaria L1 (con pocas espiras) y establece una corriente oscilante. Enseguida el capacitor C1 se carga nuevamente y repite el proceso. Así resulta un circuito oscilatorio de radio frecuencia al que llamaremos circuito primario. La energía que produce el circuito primario se induce en la bobina secundaria L2 (con más vueltas). El circuito secundario se forma con la inductancia de la bobina L2 y la pequeña capacidad distribuida en ella misma, diseñado de modo que el circuito secundario oscila a la misma frecuencia que el circuito primario, entrando en resonancia. Lo interesante de esta bobina es que la condición de resonancia es como empujar a un niño en un columpio, si le das un empujón en el momento exacto, el niño irá cada vez más alto. Finalmente, el circuito secundario produce ondas electromagnéticas de muy alta frecuencia y voltajes muy elevados. Estas se propagan en el medio ionizando las moléculas del aire, convirtiéndolo en trasmisor de corriente eléctrica.
Advertencia

Las bobinas de Tesla y amplificadores pueden producir niveles peligrosos de corriente de alta frecuencia, y también altos voltajes (250.000/500.000 voltios o más). Debido a sus altos voltajes se pueden producir descargas potencialmente letales desde los terminales superiores. Doblando el potencial exterior se cuadruplica la energía electrostática almacenada en un terminal de cierta capacitancia dada. Si un experimentador se sitúa accidentalmente en el camino de una descarga de alto voltaje a tierra, el shock eléctrico puede causar espasmos involuntarios y puede inducir fibrilación ventricular y otros problemas que puedan matarnos. Incluso bobinas de baja potencia de vacío o de estado sólido pueden producir corriente de radio frecuencia que son capaces de causar daños temporales en tejidos internos, nervios o articulaciones a través de calentamiento Joule. Además un arco eléctrico puede carbonizar la piel, produciendo dolorosas y peligrosas quemaduras que pueden alcanzar el hueso, y que pueden durar meses hasta su curación. Debido a estos riesgos, los experimentadores con conocimientos evitan el contacto con los streamers de todos excepto los sistemas más pequeños. Los profesionales suelen usar otros medios de protección como una jaula de Faraday, o trajes de cota de malla para evitar que las corrientes penetren en el cuerpo. Una amenaza que no se suele tener en cuenta es que un arco de alta frecuencia puede golpear el primario, pudiendo producirse también descargas mortales.


EL CAMPO MAGNÉTICO

Campo magnético

El campo magnético tiene un estudio diferente al campo eléctrico. Primero, se estudian los efectos del campo eléctrico y magnético sobre las cargas en movimiento y después, se estudian las fuentes del campo magnético. Movimiento de cargas en campos eléctricos y/o magnético Los principales problemas que se presentan al estudiante en este capítulo y en el siguiente, es la representación espacial de las magnitudes vectoriales que intervienen en la descripción del campo producido por una corriente o de las fuerzas que un campo magnético ejerce sobre una carga en movimiento o sobre una corriente. Varios son los ejemplos ilustrativos del efecto del campo magnético sobre las cargas en movimiento, con o sin el efecto combinado con el campo eléctrico:
•El espectrómetro de masas.
•El selector de velocidades.
•El ciclotrón.
El estudio del momento de las fuerzas que ejerce un campo magnético sobre una espira es importante para explicar el funcionamiento de los instrumentos de medida de las corrientes eléctricas, los motores y la orientación de los dipolos atómicos en un campo magnético externo.
Fuentes del campo magnético
 
La ley de Biot-Savart es complicada y solamente se utilizará para determinar el campo magnético producido por una corriente rectilínea indefinida y por una corriente circular en un punto de su eje, como paso previo a la aplicación de la ley de Ampère. Como ejercicio del primer tipo, se pedirá aplicar el principio de superposición de campos para calcular el campo magnético en un punto producido por varias corrientes rectilíneas paralelas. La fuerza magnética entre dos corrientes rectilíneas es una ejercicio que no debe pasar desapercibido por su importancia en la definición de la unidad de intensidad de la corriente eléctrica, magnitud fundamental en el Sistema Internacional de Unidades. La ley de Ampère nos indica que el campo magnético es no conservativo y debe de ser estudiada recordando la ley de Gauss, las semejanzas y diferencias entre ambas leyes fundamentales del electromagnetismo. Son pocos los ejemplos de aplicación sencillos de aplicación de la ley de Ampère, pero es necesario suministrar al estudiante una cierta estrategia, análoga a la propuesta para la resolución de problemas de aplicación de la ley de Gauss:1.Determinar la dirección del campo magnético, de acuerdo a la distribución de corrientes (rectilíneas o espiras apretadas).2.Elegir un camino cerrado apropiado que sea atravesado por corrientes, y calcular la circulación.3.Calcular la intensidad que atraviesa el camino cerrado.4.Aplicar la ley de Ampère y despejar el módulo del campo magnético. Como ejemplos ilustrativos aparte del solenoide y el toroide, se deberá proponer las variantes de la corriente rectilínea indefinida:•Corriente rectilínea indefinida de radio a uniformemente distribuida en su sección.•Dos corrientes rectilíneas una maciza y otra hueca coaxiales, del mismo sentido y de sentido contrario. A partir de la noción de flujo, se calculará el flujo del campo magnético a través de una superficie abierta o cerrada. Se puede demostrar que el flujo del campo magnético a través de una superficie cerrada es cero, lo que nos indica que el campo magnético es solenoidal, las líneas de campo magnético son cerradas.
 

viernes, 15 de mayo de 2015

LA GENÉTICA Y SUS PARTES

¿Qué es la Genética?
La Genética es la rama de la Biología que trata de la herencia y de su variación. La herencia se refiere a que la descendencia tiende a asemejarse a sus padres, basándonos en el hecho de que nuestro aspecto y función biológica, es decir, nuestro fenotipo, viene determinado en gran medida por nuestra constitución genética, es decir, nuestro genotipo. No obstante, hemos de tener en cuenta que la expresión de numerosos genes, y con ello, la manifestación de los fenotipos correspondientes, está condicionada por factores ambientales. Esta disciplina abarca el estudio de las células, los individuos, sus descendientes, y las poblaciones en las que viven los organismos. Los genéticos investigan todas las formas de variación hereditaria así como las bases moleculares subyacentes de tales características. Así pues la Genética se ha dividido en tres grandes ramas: Genética clásica (también llamada genética mendeliana o de la transmisión), Genética molecular y Genética de poblaciones. ¿Cuál es el centro de la herencia en la célula? Los organismos eucariotas se caracterizan por la presencia de un núcleo en el que se encuentra el material genético. En los procariotas, como las bacterias, el material genético se encuentra en un área no limitada, pero reconocible, de la célula denominada nucleoide. En los virus, el material genético está enfundado en una cubierta proteica denominada cabeza o cápsula viral. ¿Qué es el material genético? Tanto en eucariotas como en procariotas el DNA (ácido desoxirribonucleico) es la molécula que almacena la información genética. El RNA (ácido ribonucleico) constituye el material genético de algunos virus. Éstos son los dos tipos de ácidos nucleicos que se encuentran en los organismos. Los ácidos nucleicos, juntamente con hidratos de carbono, lípidos y proteínas, forman las cuatro clases principales de biomoléculas orgánicas que caracteriza la vida en nuestro planeta. ¿Qué es un gen? En términos sencillos, el gen es la unidad funcional de la herencia. En términos químicos es una cadena lineal de nucleótidos (los bloques químicos que constituyen el DNA y el RNA). Una definición más conceptual es considerarlo como una unidad de almacenamiento de información capaz de sufrir replicación, mutación y expresión. ¿Qué es un cromosoma? El material genético se encuentra empaquetado en unidades discretas, denominadas cromosomas. Aunque algunos virus poseen varios cromosomas, la mayoría presentan sólo uno, constituido por una molécula única de DNA o RNA. Según el tipo de virus, la molécula puede ser unicatenaria o bicatenaria, lineal o circular. El cromosoma bacteriano consiste en una estructura integrada por una molécula circular y bicatenaria de DNA asociada a proteínas y RNA. Algunas bacterias poseen elementos genéticos adicionales denominados plásmidos, de pequeño tamaño y también de DNA bicatenario y circular. En las células eucariotas, cada cromosoma consiste en una molécula de DNA bicatenario asociada con proteínas básicas denominadas histonas, y con otras proteínas no histónicas. La función de las histonas es la de constituir el soporte estructural del DNA en una fibra de estructura compleja, la cromatina, cuya subunidad básica es el nucleosoma.

jueves, 14 de mayo de 2015

LAS VENTAJAS Y DESVENTAJAS DEL INTERNET

La evolución y el acceso hacen que existan las ventajas y desventajas del internet, en estos últimos tiempos ha crecido enormemente y hoy hay mucha gente, especialmente las nuevas generaciones ya nacieron con esto, por lo que dentro de un tiempo ya el internet será algo intrínseco en nuestras vidas, y su crecimiento no lo podremos detener. Ahora bien, similar a la dependencia del teléfono celular, el internet ha hecho que muchas cosas se mejoren, haciendo procesos más eficientes, búsquedas de información mucho más sencilla, comunicación a distancia a tiempo real, y especialmente que ha economizado mucho los costos de los envíos de mensajes que anteriormente solo se daba por correspondencia. Pero también hay ventajas y desventajas del internet, éste ha traído muchas cosas malas, como toda tecnología lo hace, y es hacer que las personas sean mucho más cómodas, trabajen menos, y accesibles a otro tipo de información desagradable. Por lo que vale la pena listar algunas ventajas y desventajas del internet en estos últimos tiempos: Ventajas:  Hace la comunicación mucho más sencilla.  Es posible conocer e interactuar con muchas personas de todas partes del mundo.  La búsqueda de información se vuelve mucho más sencilla, sin tener que ir forzadamente a las bibliotecas tradicionales.  Es posible encontrar muchos puntos de vista diferentes sobre alguna noticia.  Es posible la creación y descarga de software libre, por sus herramientas colaborativas.  La computadora se actualiza periódicamente más fácil que si no tuviéramos internet.  Es posible encontrar soporte técnico de toda clase sobre alguna herramienta o proceso.  El seguimiento de la información a tiempo real es posible a través del Internet.  Es posible comprar fácilmente a otras tiendas de otros p  Y es posible compartir muchas cosas personales o conocimientos que a otro le puede servir, y de esa manera, se vuelve bien provechoso. Desventajas  Así como es de fácil encontrar información buena, es posible encontrar de la misma forma información mala, desagradable (pornografía, violencia explícita, terrorismo) que puede afectar especialmente a los menores.  Te genera una gran dependencia o vicio del internet, descuidándote de muchas cosas personales o laborales.  Hace que los estudiantes se esfuercen menos en hacer sus tareas, debido a la mala práctica del copy/paste.  El principal puente de la piratería es el internet  Dependencia de procesos. Si hay un corte de internet, hay muchos procesos que se quedan varados por esa dependencia.  Dependencia de energía eléctrica. Si hay un corte de energía en la casa, adiós internet (no es el caso de la telefonía convencional).  Hace que nazcan otros males tales como el spam, el malware, la proliferación de los virus, el phising, etc. Así como todo, hay cosas buenas y cosas malas, así que hay que saber equilibrar nuestro uso del internet para que sea provechoso en nuestras vidas.